Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.763
Filtrar
Más filtros











Intervalo de año de publicación
1.
Commun Biol ; 7(1): 497, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658677

RESUMEN

Most lung cancer patients with metastatic cancer eventually relapse with drug-resistant disease following treatment and EGFR mutant lung cancer is no exception. Genome-wide CRISPR screens, to either knock out or overexpress all protein-coding genes in cancer cell lines, revealed the landscape of pathways that cause resistance to the EGFR inhibitors osimertinib or gefitinib in EGFR mutant lung cancer. Among the most recurrent resistance genes were those that regulate the Hippo pathway. Following osimertinib treatment a subpopulation of cancer cells are able to survive and over time develop stable resistance. These 'persister' cells can exploit non-genetic (transcriptional) programs that enable cancer cells to survive drug treatment. Using genetic and pharmacologic tools we identified Hippo signalling as an important non-genetic mechanism of cell survival following osimertinib treatment. Further, we show that combinatorial targeting of the Hippo pathway and EGFR is highly effective in EGFR mutant lung cancer cells and patient-derived organoids, suggesting a new therapeutic strategy for EGFR mutant lung cancer patients.


Asunto(s)
Acrilamidas , Resistencia a Antineoplásicos , Receptores ErbB , Indoles , Neoplasias Pulmonares , Mutación , Pirimidinas , Factores de Transcripción , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Resistencia a Antineoplásicos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Acrilamidas/farmacología , Acrilamidas/uso terapéutico , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Gefitinib/farmacología , Vía de Señalización Hippo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transducción de Señal , Factores de Transcripción de Dominio TEA , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/farmacología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Sistemas CRISPR-Cas
2.
Biosensors (Basel) ; 14(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38667155

RESUMEN

Gold nanoparticles (AuNPs) exhibit improved optical and spectral properties compared to bulk materials, making them suitable for the detection of DNA, RNA, antigens, and antibodies. Here, we describe a simple, selective, and rapid non-cross linking detection assay, using approx. 35 nm spherical Au nanoprobes, for a common mutation occurring in exon 19 of the epidermal growth factor receptor (EGFR), associated with non-small-cell lung cancer cells. AuNPs were synthesized based on the seed-mediated growth method and functionalized with a specific 16 bp thiolated oligonucleotide using a pH-assisted method. Both AuNPs and Au nanoprobes proved to be highly stable and monodisperse through ultraviolet-visible spectrophotometry, dynamic light scattering (DLS), and electrophoretic light scattering (ELS). Our results indicate a detection limit of 1.5 µg mL-1 using a 0.15 nmol dm-3 Au nanoprobe concentration. In conclusion, this work presents an effective possibility for a straightforward, fast, and inexpensive alternative for the detection of DNA sequences related to lung cancer, leading to a potential platform for early diagnosis of lung cancer patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Receptores ErbB , Oro , Neoplasias Pulmonares , Nanopartículas del Metal , Oro/química , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Receptores ErbB/genética , Nanopartículas del Metal/química , Neoplasias Pulmonares/diagnóstico , Técnicas Biosensibles , Detección Precoz del Cáncer
3.
Curr Oncol ; 31(4): 1947-1960, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38668049

RESUMEN

Real-world evidence for patients with advanced EGFR-mutated non-small cell lung cancer (NSCLC) in Canada is limited. This study's objective was to use previously validated DARWENTM artificial intelligence (AI) to extract data from electronic heath records of patients with non-squamous NSCLC at University Health Network (UHN) to describe EGFR mutation prevalence, treatment patterns, and outcomes. Of 2154 patients with NSCLC, 613 had advanced disease. Of these, 136 (22%) had common sensitizing EGFR mutations (cEGFRm; ex19del, L858R), 8 (1%) had exon 20 insertions (ex20ins), and 338 (55%) had EGFR wild type. One-year overall survival (OS) (95% CI) for patients with cEGFRm, ex20ins, and EGFR wild type tumours was 88% (83, 94), 100% (100, 100), and 59% (53, 65), respectively. In total, 38% patients with ex20ins received experimental ex20ins targeting treatment as their first-line therapy. A total of 57 patients (36%) with cEGFRm received osimertinib as their first-line treatment, and 61 (39%) received it as their second-line treatment. One-year OS (95% CI) following the discontinuation of osimertinib was 35% (17, 75) post-first-line and 20% (9, 44) post-second-line. In this real-world AI-generated dataset, survival post-osimertinib was poor in patients with cEGFR mutations. Patients with ex20ins in this cohort had improved outcomes, possibly due to ex20ins targeting treatment, highlighting the need for more effective treatments for patients with advanced EGFRm NSCLC.


Asunto(s)
Inteligencia Artificial , Carcinoma de Pulmón de Células no Pequeñas , Receptores ErbB , Neoplasias Pulmonares , Mutación , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Canadá , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Receptores ErbB/genética , Femenino , Masculino , Persona de Mediana Edad , Anciano , Resultado del Tratamiento , Anciano de 80 o más Años , Adulto
4.
J Cancer Res Clin Oncol ; 150(4): 215, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668879

RESUMEN

BACKGROUND: Inflammation and nutrition are important parameters that significantly affect survival in various malignancies. Prognostic nutritional index (PNI) and modified Glasgow prognostic score (mGPS) can reflect both inflammatory and nutritional conditions. Therefore, we aimed to evaluate the prognostic value of PNI and mGPS in patients who had the targetable mutation and also received targeted therapy. MATERIALS AND METHODS: Advanced lung cancer patients with EGFR mutation (mut) and ALK rearrangement were enrolled to study, retrospectively. PNI has with the following formula: 10 × serum albumin (g/dl) + 0.005 × peripheral lymphocyte count (per mm3) and threshold value was accepted as 50. Modified GPS was also calculated using albumin and CRP level and patients were scored as range 0 to 2. RESULTS: A total of 182 patients enrolled in the study. 132 and 50 of 182 patients had EGFR mut and ALK rearrangement, respectively. PFS was significantly longer in high PNI group in both the EGFR and ALK rearrangement-positive subgroups (P = 0.004 for EGFR mut-positive group; P = 0.017 for ALK rearrangement-positive group). Additionally, PFS was significantly shortened from mGPS 0 to 2 (P = < 0.001 for EGFR mut-positive group; P = 0.016 for ALK rearrangement-positive group). CONCLUSION: Both PNI and mGPS can be used as a reliable, inexpensive, and easily applicable prognostic index in the advanced lung cancer patients who had the targetable mutation and also received targeted therapy.


Asunto(s)
Receptores ErbB , Neoplasias Pulmonares , Mutación , Evaluación Nutricional , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Pronóstico , Anciano , Estudios Retrospectivos , Receptores ErbB/genética , Adulto , Quinasa de Linfoma Anaplásico/genética , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad
5.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38557672

RESUMEN

Lung adenocarcinoma (LUAD) is the most common histologic subtype of lung cancer. Early-stage patients have a 30-50% probability of metastatic recurrence after surgical treatment. Here, we propose a new computational framework, Interpretable Biological Pathway Graph Neural Networks (IBPGNET), based on pathway hierarchy relationships to predict LUAD recurrence and explore the internal regulatory mechanisms of LUAD. IBPGNET can integrate different omics data efficiently and provide global interpretability. In addition, our experimental results show that IBPGNET outperforms other classification methods in 5-fold cross-validation. IBPGNET identified PSMC1 and PSMD11 as genes associated with LUAD recurrence, and their expression levels were significantly higher in LUAD cells than in normal cells. The knockdown of PSMC1 and PSMD11 in LUAD cells increased their sensitivity to afatinib and decreased cell migration, invasion and proliferation. In addition, the cells showed significantly lower EGFR expression, indicating that PSMC1 and PSMD11 may mediate therapeutic sensitivity through EGFR expression.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/metabolismo , Línea Celular Tumoral , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Receptores ErbB/genética , Proliferación Celular
6.
Sci Signal ; 17(832): eadf4299, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38626007

RESUMEN

Cell-to-cell communication through secreted Wnt ligands that bind to members of the Frizzled (Fzd) family of transmembrane receptors is critical for development and homeostasis. Wnt9a signals through Fzd9b, the co-receptor LRP5 or LRP6 (LRP5/6), and the epidermal growth factor receptor (EGFR) to promote early proliferation of zebrafish and human hematopoietic stem cells during development. Here, we developed fluorescently labeled, biologically active Wnt9a and Fzd9b fusion proteins to demonstrate that EGFR-dependent endocytosis of the ligand-receptor complex was required for signaling. In human cells, the Wnt9a-Fzd9b complex was rapidly endocytosed and trafficked through early and late endosomes, lysosomes, and the endoplasmic reticulum. Using small-molecule inhibitors and genetic and knockdown approaches, we found that Wnt9a-Fzd9b endocytosis required EGFR-mediated phosphorylation of the Fzd9b tail, caveolin, and the scaffolding protein EGFR protein substrate 15 (EPS15). LRP5/6 and the downstream signaling component AXIN were required for Wnt9a-Fzd9b signaling but not for endocytosis. Knockdown or loss of EPS15 impaired hematopoietic stem cell development in zebrafish. Other Wnt ligands do not require endocytosis for signaling activity, implying that specific modes of endocytosis and trafficking may represent a method by which Wnt-Fzd specificity is established.


Asunto(s)
Pez Cebra , beta Catenina , Animales , Humanos , beta Catenina/metabolismo , Endocitosis , Receptores ErbB/genética , Células Madre Hematopoyéticas/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
7.
J Neuropathol Exp Neurol ; 83(5): 338-344, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38605523

RESUMEN

EGFR amplification in gliomas is commonly defined by an EGFR/CEP7 ratio of ≥2. In testing performed at a major reference laboratory, a small subset of patients had ≥5 copies of both EGFR and CEP7 yet were not amplified by the EGFR/CEP7 ratio and were designated high polysomy cases. To determine whether these tumors are more closely related to traditionally defined EGFR-amplified or nonamplified gliomas, a retrospective search identified 22 out of 1143 (1.9%) gliomas with an average of ≥5 copies/cell of EGFR and CEP7 with an EGFR/CEP7 ratio of <2 displaying high polysomy. Of these cases, 4 had insufficient clinicopathologic data to include in additional analysis, 15 were glioblastomas, 2 were IDH-mutant astrocytomas, and 1 was a high-grade glial neoplasm, NOS. Next-generation sequencing available on 3 cases demonstrated one with a TERT promoter mutation, TP53 mutations in all cases, and no EGFR mutations or amplifications, which most closely matched the nonamplified cases. The median overall survival times were 42.86, 66.07, and 41.14 weeks for amplified, highly polysomic, and nonamplified, respectively, and were not significantly different (p = 0.3410). High chromosome 7 polysomic gliomas are rare but our data suggest that they may be biologically similar to nonamplified gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioblastoma/patología , Estudios Retrospectivos , Neoplasias Encefálicas/patología , Hibridación Fluorescente in Situ , Receptores ErbB/genética , Glioma/genética , Mutación/genética , Aberraciones Cromosómicas , Isocitrato Deshidrogenasa/genética
8.
Am Soc Clin Oncol Educ Book ; 44(3): e432516, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38560815

RESUMEN

Druggable oncogene-driven non-small cell lung cancer has led to innovative systemic treatment options, improving patients' outcome. This benefit is not only achieved in the metastatic setting but also in the postsurgical setting, such as in lung cancers harboring a common sensitizing EGFR mutation or ALK-rearrangement. To enhance the outcome of these patients, we need to understand the mechanisms of acquired resistance and evaluate the role of new drugs with novel mechanisms of action in the treatment landscape. In this chapter, we review treatment strategies of EGFR-mutant tumors in all stages, the mechanisms of acquired strategies, and novel therapies in this subset.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Quinasa de Linfoma Anaplásico/genética , Receptores ErbB/genética , Mutación , Oncogenes , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología
9.
J Transl Med ; 22(1): 326, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566102

RESUMEN

BACKGROUND: The effects of gut microbiota and metabolites on the responses to immune checkpoint inhibitors (ICIs) in advanced epidermal growth factor receptor (EGFR) wild-type non-small cell lung cancer (NSCLC) have been studied. However, their effects on EGFR-mutated (EGFR +) NSCLC remain unknown. METHODS: We prospectively recorded the clinicopathological characteristics of patients with advanced EGFR + NSCLC and assessed potential associations between the use of antibiotics or probiotics and immunotherapy efficacy. Fecal samples were collected at baseline, early on-treatment, response and progression status and were subjected to metagenomic next-generation sequencing and ultra-high-performance liquid chromatography-mass spectrometry analyses to assess the effects of gut microbiota and metabolites on immunotherapy efficacy. RESULTS: The clinical data of 74 advanced EGFR + NSCLC patients were complete and 18 patients' fecal samples were dynamically collected. Patients that used antibiotics had shorter progression-free survival (PFS) (mPFS, 4.8 vs. 6.7 months; P = 0.037); probiotics had no impact on PFS. Two dynamic types of gut microbiota during immunotherapy were identified: one type showed the lowest relative abundance at the response time point, whereas the other type showed the highest abundance at the response time point. Metabolomics revealed significant differences in metabolites distribution between responders and non-responders. Deoxycholic acid, glycerol, and quinolinic acid were enriched in responders, whereas L-citrulline was enriched in non-responders. There was a significant correlation between gut microbiota and metabolites. CONCLUSIONS: The use of antibiotics weakens immunotherapy efficacy in patients with advanced EGFR + NSCLC. The distribution characteristics and dynamic changes of gut microbiota and metabolites may indicate the efficacy of immunotherapy in advanced EGFR + NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Microbioma Gastrointestinal , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamiento farmacológico , Inmunoterapia , Receptores ErbB/genética , Antibacterianos/uso terapéutico
10.
PLoS One ; 19(4): e0299267, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38568950

RESUMEN

BACKGROUND AND OBJECTIVE: Glioblastoma (GBM) is one of the most aggressive and lethal human cancers. Intra-tumoral genetic heterogeneity poses a significant challenge for treatment. Biopsy is invasive, which motivates the development of non-invasive, MRI-based machine learning (ML) models to quantify intra-tumoral genetic heterogeneity for each patient. This capability holds great promise for enabling better therapeutic selection to improve patient outcome. METHODS: We proposed a novel Weakly Supervised Ordinal Support Vector Machine (WSO-SVM) to predict regional genetic alteration status within each GBM tumor using MRI. WSO-SVM was applied to a unique dataset of 318 image-localized biopsies with spatially matched multiparametric MRI from 74 GBM patients. The model was trained to predict the regional genetic alteration of three GBM driver genes (EGFR, PDGFRA and PTEN) based on features extracted from the corresponding region of five MRI contrast images. For comparison, a variety of existing ML algorithms were also applied. Classification accuracy of each gene were compared between the different algorithms. The SHapley Additive exPlanations (SHAP) method was further applied to compute contribution scores of different contrast images. Finally, the trained WSO-SVM was used to generate prediction maps within the tumoral area of each patient to help visualize the intra-tumoral genetic heterogeneity. RESULTS: WSO-SVM achieved 0.80 accuracy, 0.79 sensitivity, and 0.81 specificity for classifying EGFR; 0.71 accuracy, 0.70 sensitivity, and 0.72 specificity for classifying PDGFRA; 0.80 accuracy, 0.78 sensitivity, and 0.83 specificity for classifying PTEN; these results significantly outperformed the existing ML algorithms. Using SHAP, we found that the relative contributions of the five contrast images differ between genes, which are consistent with findings in the literature. The prediction maps revealed extensive intra-tumoral region-to-region heterogeneity within each individual tumor in terms of the alteration status of the three genes. CONCLUSIONS: This study demonstrated the feasibility of using MRI and WSO-SVM to enable non-invasive prediction of intra-tumoral regional genetic alteration for each GBM patient, which can inform future adaptive therapies for individualized oncology.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Glioblastoma/patología , Medicina de Precisión , Heterogeneidad Genética , Imagen por Resonancia Magnética/métodos , Algoritmos , Aprendizaje Automático , Máquina de Vectores de Soporte , Receptores ErbB/genética
11.
Cancer Med ; 13(8): e7208, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38659399

RESUMEN

OBJECTIVE: To elucidate the potential benefits of combining radiotherapy and epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) for individuals with Stage IV lung adenocarcinoma (LUAD) harboring either exon 19 deletion (19-Del) or exon 21 L858R mutation (21-L858R). METHODS: In this real-world retrospective study, 177 individuals with Stage IV LUAD who underwent EGFR-TKIs and radiotherapy at Shandong Cancer Hospital from June 2012 to August 2017 were included. The main focus of this real-world study was overall survival (OS). RESULTS: The clinical characteristics of patients with Stage IV LUAD harboring 19-Del were similar to those harboring 21-L858R (p > 0.05). Overall, the patients had a median OS (mOS) of 32.0 months (95% confidence interval [CI]: 28.6-35.5). Subsequently, multivariate analysis indicated that both EGFR mutations and thoracic radiotherapy were independent predictors of OS (p = 0.001 and 0.013). Furthermore, subgroup analysis highlighted a longer OS for the 19-Del group compared to the 21-L858R group, especially when EGFR-TKIs were combined with bone metastasis or thoracic radiotherapy (mOS: 34.7 vs. 25.1 months and 51.0 vs. 29.6 months; p = 0.0056 and 0.0013, respectively). However, no significant differences were found in OS when considering patients who underwent brain metastasis radiotherapy (mOS: 34.7 vs. 25.1 months; p = 0.088). CONCLUSIONS: Patients with Stage IV LUAD harboring 19-Del experience a notably prolonged OS following combined therapy with EGFR-TKIs and radiotherapy, while this OS benefit is observed despite the absence of substantial differences in the clinical characteristics between the 19-Del and 21-L858R groups.


Asunto(s)
Adenocarcinoma del Pulmón , Receptores ErbB , Neoplasias Pulmonares , Mutación , Estadificación de Neoplasias , Inhibidores de Proteínas Quinasas , Humanos , Masculino , Femenino , Receptores ErbB/genética , Receptores ErbB/antagonistas & inhibidores , Persona de Mediana Edad , Inhibidores de Proteínas Quinasas/uso terapéutico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/terapia , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/radioterapia , Adenocarcinoma del Pulmón/mortalidad , Estudios Retrospectivos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/mortalidad , Anciano , Pronóstico , Adulto , Exones , Quimioradioterapia/métodos , Eliminación de Secuencia
12.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612674

RESUMEN

We investigated mRNA-lncRNA co-expression patterns in a cellular model system of non-small cell lung cancer (NSCLC) sensitive and resistant to the epithelial growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) erlotinib/gefitinib. The aim of this study was to unveil insights into the complex mechanisms of NSCLC targeted therapy resistance and epithelial-to-mesenchymal transition (EMT). Genome-wide RNA expression was quantified for weighted gene co-expression network analysis (WGCNA) to correlate the expression levels of mRNAs and lncRNAs. Functional enrichment analysis and identification of lncRNAs were conducted on modules associated with the EGFR-TKI response and/or intermediate EMT phenotypes. We constructed lncRNA-mRNA co-expression networks and identified key modules and their enriched biological functions. Processes enriched in the selected modules included RHO (A, B, C) GTPase and regulatory signaling pathways, apoptosis, inflammatory and interleukin signaling pathways, cell adhesion, cell migration, cell and extracellular matrix organization, metabolism, and lipid metabolism. Interestingly, several lncRNAs, already shown to be dysregulated in cancer, are connected to a small number of mRNAs, and several lncRNAs are interlinked with each other in the co-expression network.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , ARN Largo no Codificante , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , ARN Largo no Codificante/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Receptores ErbB/genética
13.
Drug Des Devel Ther ; 18: 1115-1131, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38618280

RESUMEN

Background: The ChaiShao Shugan Formula (CSSGF) is a traditional Chinese medicine formula with recently identified therapeutic value in triple-negative breast cancer (TNBC). This study aimed to elucidate the underlying mechanism of CSSGF in TNBC treatment. Methods: TNBC targets were analyzed using R and data were from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The major ingredients and related protein targets of CSSGF were explored via the Traditional Chinese Medicine Systems Pharmacology database, and an ingredient-target network was constructed via Cytoscape to identify hub genes. The STRING database was used to construct the PPI network. GO and KEGG enrichment analyses were performed via R to obtain the main targets. The online tool Kaplan‒Meier plotter was used to identify the prognostic genes. Molecular docking was applied to the core target genes and active ingredients. MDA-MB-231 and MCF-7 cell lines were used to verify the efficacy of the various drugs. Results: A total of 4562 genes were screened as TNBC target genes. The PPI network consisted of 89 nodes and 845 edges. Our study indicated that quercetin, beta-sitosterol, luteolin and catechin might be the core ingredients of CSSGF, and EGFR and c-Myc might be the latent therapeutic targets of CSSGF in the treatment of TNBC. GO and KEGG analyses indicated that the anticancer effect of CSSGF on TNBC was mainly associated with DNA binding, transcription factor binding, and other biological processes. The related signaling pathways mainly involved the TNF-a, IL-17, and apoptosis pathways. The molecular docking data indicated that quercetin, beta-sitosterol, luteolin, and catechin had high affinity for EGFR, JUN, Caspase-3 and ESR1, respectively. In vitro, we found that CSSGF could suppress the expression of c-Myc or promote the expression of EGFR. In addition, we found that quercetin downregulates c-Myc expression in two BC cell lines. Conclusion: This study revealed the effective ingredients and latent molecular mechanism of action of CSSGF against TNBC and confirmed that quercetin could target c-Myc to induce anti-BC effects.


Asunto(s)
Catequina , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Luteolina , Simulación del Acoplamiento Molecular , Quercetina , Células MCF-7 , Receptores ErbB/genética
14.
BMC Cancer ; 24(1): 454, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605303

RESUMEN

OBJECTIVE: To explore the value of six machine learning models based on PET/CT radiomics combined with EGFR in predicting brain metastases of lung adenocarcinoma. METHODS: Retrospectively collected 204 patients with lung adenocarcinoma who underwent PET/CT examination and EGFR gene detection before treatment from Cancer Hospital Affiliated to Shandong First Medical University in 2020. Using univariate analysis and multivariate logistic regression analysis to find the independent risk factors for brain metastasis. Based on PET/CT imaging combined with EGFR and PET metabolic indexes, established six machine learning models to predict brain metastases of lung adenocarcinoma. Finally, using ten-fold cross-validation to evaluate the predictive effectiveness. RESULTS: In univariate analysis, patients with N2-3, EGFR mutation-positive, LYM%≤20, and elevated tumor markers(P<0.05) were more likely to develop brain metastases. In multivariate Logistic regression analysis, PET metabolic indices revealed that SUVmax, SUVpeak, Volume, and TLG were risk factors for lung adenocarcinoma brain metastasis(P<0.05). The SVM model was the most efficient predictor of brain metastasis with an AUC of 0.82 (PET/CT group),0.70 (CT group),0.76 (PET group). CONCLUSIONS: Radiomics combined with EGFR machine learning model as a new method have higher accuracy than EGFR mutation alone. SVM model is the most effective method for predicting brain metastases of lung adenocarcinoma, and the prediction efficiency of PET/CT group is better than PET group and CT group.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias Pulmonares/genética , Estudios Retrospectivos , Adenocarcinoma/genética , Adenocarcinoma del Pulmón/diagnóstico por imagen , Adenocarcinoma del Pulmón/patología , Pulmón/patología , Receptores ErbB/genética , Aprendizaje Automático , Neoplasias Encefálicas/diagnóstico por imagen
15.
Pathol Oncol Res ; 30: 1611715, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605928

RESUMEN

The complex therapeutic strategy of non-small cell lung cancer (NSCLC) has changed significantly in recent years. Disease-free survival increased significantly with immunotherapy and chemotherapy registered in perioperative treatments, as well as adjuvant registered immunotherapy and targeted therapy (osimertinib) in case of EGFR mutation. In oncogenic-addictive metastatic NSCLC, primarily in adenocarcinoma, the range of targeted therapies is expanding, with which the expected overall survival increases significantly, measured in years. By 2021, the FDA and EMA have approved targeted agents to inhibit EGFR activating mutations, T790 M resistance mutation, BRAF V600E mutation, ALK, ROS1, NTRK and RET fusion. In 2022, the range of authorized target therapies was expanded. With therapies that inhibit KRASG12C, EGFR exon 20, HER2 and MET. Until now, there was no registered targeted therapy for the KRAS mutations, which affect 30% of adenocarcinomas. Thus, the greatest expectation surrounded the inhibition of the KRAS G12C mutation, which occurs in ∼15% of NSCLC, mainly in smokers and is characterized by a poor prognosis. Sotorasib and adagrasib are approved as second-line agents after at least one prior course of chemotherapy and/or immunotherapy. Adagrasib in first-line combination with pembrolizumab immunotherapy proved more beneficial, especially in patients with high expression of PD-L1. In EGFR exon 20 insertion mutation of lung adenocarcinoma, amivantanab was registered for progression after platinum-based chemotherapy. Lung adenocarcinoma carries an EGFR exon 20, HER2 insertion mutation in 2%, for which the first targeted therapy is trastuzumab deruxtecan, in patients already treated with platinum-based chemotherapy. Two orally administered selective c-MET inhibitors, capmatinib and tepotinib, were also approved after chemotherapy in adenocarcinoma carrying MET exon 14 skipping mutations of about 3%. Incorporating reflex testing with next-generation sequencing (NGS) expands personalized therapies by identifying guideline-recommended molecular alterations.


Asunto(s)
Acetonitrilos , Adenocarcinoma del Pulmón , Adenocarcinoma , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Piperazinas , Pirimidinas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas/genética , Mutación , Adenocarcinoma/genética , Receptores ErbB/genética
16.
Clin Cancer Res ; 30(8): 1478-1487, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593249

RESUMEN

PURPOSE: RUNX3 is a tumor suppressor gene, which is inactivated in approximately 70% of lung adenocarcinomas. Nicotinamide, a sirtuin inhibitor, has demonstrated potential in re-activating epigenetically silenced RUNX3 in cancer cells. This study assessed the therapeutic benefits of combining nicotinamide with first-generation EGFR-tyrosine kinase inhibitors (TKI) for patients with stage IV lung cancer carrying EGFR mutations. PATIENTS AND METHODS: We assessed the impact of nicotinamide on carcinogen-induced lung adenocarcinomas in mice and observed that nicotinamide increased RUNX3 levels and inhibited lung cancer growth. Subsequently, 110 consecutive patients with stage IV lung cancer who had EGFR mutations were recruited: 70 females (63.6%) and 84 never-smokers (76.4%). The patients were randomly assigned to receive either nicotinamide (1 g/day, n = 55) or placebo (n = 55). The primary and secondary endpoints were progression-free survival (PFS) and overall survival (OS), respectively. RESULTS: After a median follow-up of 54.3 months, the nicotinamide group exhibited a median PFS of 12.7 months [95% confidence interval (CI), 10.4-18.3], while the placebo group had a PFS of 10.9 months (9.0-13.2; P = 0.2). The median OS was similar in the two groups (31.0 months with nicotinamide vs. 29.4 months with placebo; P = 0.2). Notably, subgroup analyses revealed a significant reduction in mortality risk for females (P = 0.01) and never-smokers (P = 0.03) treated with nicotinamide. CONCLUSIONS: The addition of nicotinamide with EGFR-TKIs demonstrated potential improvements in PFS and OS, with notable survival benefits for female patients and those who had never smoked (ClinicalTrials.gov Identifier: NCT02416739).


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Femenino , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Niacinamida/uso terapéutico , Pronóstico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Receptores ErbB/genética
17.
Cancer Res ; 84(8): 1188-1190, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38616658

RESUMEN

Residual cancer cells persist even after targeted therapies, serving as a reservoir for the subsequent acquisition of genetic alterations that lead to acquired drug resistance and tumor relapse. These initial drug-tolerant persisters (DTP) are phenotypically heterogenous with transient phenotypes attributed to epigenetic, metabolic, and cell-cycle changes. DTPs are responsible for the inevitable relapse seen in EGFR-mutant non-small cell lung cancer (NSCLC) despite high initial response to tyrosine kinase inhibitor (TKI) treatment. While past in vitro studies identified diverse drivers of drug-tolerant persistence to EGFR TKIs in NSCLC, the resultant phenotypic plasticity is not well understood and in vivo models of persistence are lacking. In this issue of Cancer Research, Hu and colleagues used patient-derived xenograft models of EGFR-mutant lung cancer treated with the third-generation TKI osimertinib to investigate mechanisms of persistence at the time of maximal response. Using bulk and single-cell RNA sequencing, the authors identified a DTP transcriptional cluster mediated by the key neuroendocrine lineage transcription factor ASCL1, which triggers an epithelial-to-mesenchymal transition transcriptional program. ASCL1 overexpression increased osimertinib tolerance in vitro as well, apparently independent of its role in neuroendocrine differentiation. Interestingly, the ability of ASCL1 to induce persistence was context dependent as this occurred only in epigenetically permissive cells. Overall, these findings contribute to our understanding of DTP heterogeneity seen after osimertinib treatment and provide insights into potential therapeutic targets. See related article by Hu et al., p. 1303.


Asunto(s)
Acrilamidas , Compuestos de Anilina , Carcinoma de Pulmón de Células no Pequeñas , Indoles , Neoplasias Pulmonares , Pirimidinas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Recurrencia Local de Neoplasia , Recurrencia , Receptores ErbB/genética
19.
Chem Biol Drug Des ; 103(4): e14517, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38610074

RESUMEN

The epidermal growth factor receptor (EGFR) has been well validated as a therapeutic target for anticancer drug discovery. Osimertinib has become the first globally accessible third-generation EGFR inhibitor, representing one of the most advanced developments in non-small-cell lung cancer (NSCLC) therapy. However, a tertiary Cys797 to Ser797 (C797S) point mutation has hampered osimertinib treatment in patients with advanced EGFR-mutated NSCLC. Several classes of fourth-generation EGFR inhibitors were consequently discovered with the aim of overcoming the EGFRC797S mutation-mediated resistance. However, no clinical efficacy data of the fourth-generation EGFR inhibitors were reported to date, and EGFRC797S mutation-mediated resistance remains an "unmet clinical need." Proteolysis-targeting chimeric molecules (PROTACs) obtained from EGFR-TKIs have been developed to target drug resistance EGFR in NSCLC. Some PROTACs are from nature products. These degraders compared with EGFR inhibitors showed better efficiency in their cellular potency, inhibition, and toxicity profiles. In this review, we first introduce the structural properties of EGFR, the resistance, and mutations of EGFR, and then mainly focus on the recent advances of EGFR-targeting degraders along with its advantages and outstanding challenges.


Asunto(s)
Acrilamidas , Compuestos de Anilina , Carcinoma de Pulmón de Células no Pequeñas , Indoles , Neoplasias Pulmonares , Pirimidinas , Humanos , Receptores ErbB/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
20.
PLoS One ; 19(4): e0295987, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38593164

RESUMEN

Survival rates in non-small cell lung cancer (NSCLC) are low. Detection of circulating tumor DNA in liquid biopsy (plasma) is increasingly used to identify targeted therapies for clinically actionable mutations, including EGFR mutations in NSCLC. The cobas® EGFR Mutation Test v2 (cobas EGFR test) is FDA-approved for EGFR mutation detection in tissue or liquid biopsy from NSCLC. Standard K2EDTA tubes require plasma separation from blood within 4 to 8 hours; however, Roche Cell-Free DNA (cfDNA) Collection Tubes (Roche cfDNA tube) enable whole blood stability for up to 7 days prior to plasma separation. This analysis assessed performance of Roche cfDNA tubes with the cobas EGFR test for the detection of EGFR mutations in plasma from healthy donors or patients with NSCLC. Overall, test performance was equally robust with either blood collection tube, eg, regarding limit of detection, linearity, and reproducibility, making Roche cfDNA tubes suitable for routine clinical laboratory use in this setting. Importantly, the Roche cfDNA tubes provided more flexibility for specimen handling versus K2EDTA tubes, eg, in terms of tube mixing, plasma separation, and sample stability, and do not require processing of blood within 8 hours thereby increasing the reach of plasma biopsies in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ácidos Nucleicos Libres de Células , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Ácidos Nucleicos Libres de Células/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Reproducibilidad de los Resultados , Mutación , Reacción en Cadena de la Polimerasa , Receptores ErbB/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA